

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	GLPK wrapper package for the Julia language 0.1 documentation

GLPK — Wrapper for the GNU Linear Programming Kit (GLPK)

This module provides a wrapper for the GNU Linear Programming Kit
(GLPK [http://www.gnu.org/software/glpk]), which is a C library, in Julia.
It is designed for making it easy to port C code to Julia, while at the same time having the
benefits of the higher level language features of Julia, like the automatic management of memory, the possibility
of returning tuples/strings/vectors etc.

It’s currently based on GLPK version 4.47.

Installation

To install the module, you will need to make sure that you have libgmp and libltdl3 headers installed. For
example, on Ubuntu you can issue on the command line:

$ sudo apt-get install libgmp-dev libltdl3-dev

to install them.

After that, the module can be installed via Julia’s package manager:

julia> Pkg.add("GLPK")

Preamble

Almost all GLPK functions can be called in Julia with basically the same syntax as in the original C library,
with some simple translation rules (with very few exceptions).
Some functionality is still missing (see this list); most of it will be
added in the future.

Let’s start with an example. This is an excerpt from the beginning of the sample.c example program
which ships with GLPK:

/* C code */
glp_prob *lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);

This is the Julia translation of the above:

Julia code
lp = GLPK.Prob()
GLPK.set_prob_name(lp, "sample")
GLPK.set_obj_dir(lp, GLPK.MAX)
GLPK.add_rows(lp, 3)
GLPK.set_row_name(lp, 1, "p")
GLPK.set_row_bnds(lp, 1, GLPK.UP, 0.0, 100.0)

Apart from the first line, which is different, the translation of subsequent lines follows the very simple
rule that function names and constants drop the prefixes glp_ and GLP_, and take the GLPK
module prefix instead (at the moment, constants are integer values, like in C, but this may change
in the future).
Note that, as with all Julia modules, the GLPK prefix could be omitted by adding a using GLPK
line in the code, but this is not advised in this case due to the very high number of functions with
relatively common names in the library.

Because of the strict adherence of the Julia functions to their C counterparts, and since the GLPK
documentation is extremely well written and complete, this manual page is not going to document
the whole GLPK library in detail, but rather provide the rules needed to translate
from C to Julia, detail the few exceptions to these rules and then
list all the available functions with a brief description of their
usage.

Please, refer to the original GLPK manual (available at http://www.gnu.org/software/glpk) for a detailed
description of the library API.

GLPK translation rules from C to Julia

1) functions and constants drop their prefix

Almost all functions in the C library start with the prefix glp_, and all constants start with
the prefix GLP_. These prefixes are dropped in Julia, and the module prefix GLPK. is used
instead. For example, the function glp_simplex becomes GLPK.simplex, and the constant
GLP_UP becomes GLPK.UP.

2) from C stucts to Julia objects

All structs in the original GLPK are wrapped up in composite types, which initialize and destroy themselves
as needed. For example, the glp_prob C struct becomes the GLPK.Prob Julia type.
Whenever in C you would pass a pointer to a struct, in Julia you pass a corresponding composite object.
This is the table relating C structs with Julia types:

	C
	Julia

	glp_prob
	GLPK.Prob

	glp_smcp
	GLPK.SimplexParam

	glp_iptcp
	GLPK.InteriorParam

	glp_iocp
	GLPK.IntoptParam

	glp_bfcp
	GLPK.BasisFactParam

	glp_tran
	GLPK.MathProgWorkspace

	glp_data
	GLPK.Data

Therefore, the original C GLPK API:

int glp_simplex(glp_prob * lp, glp_smpc * param)

becomes:

GLPK.simplex(lp::GLPK.Prob, param::GLPL.SimplexParam)

In the C GLPK API, objects are created by functions, such as:

glp_prob * lp = glp_create_prob();
glp_smcp * param = glp_smcp_init();

and need to be destroyed when the program is finished:

glp_delete_prob(lp);
glp_smcp_delete(smcp);

In Julia, objects are created by calling the object constructor (without parameters):

lp = GLPK.Prob()
param = GLPK.SimplexParam()

and they are automatically destroyed by the garbage collector when no longer needed.

3) setting the parameters to the solvers

In all GLPK solver functions, like glp_simplex, options are passed via structs. As stated before, these become
composite object types in Julia; but instead of setting a field, like in C:

param = glp_smcp_init();
param.msg_lev = GLP_MSG_ERR;
param.presolve = GLP_ON;

in Julia one uses an array-like referencing syntax:

param = GLPK.SimplexParam()
param["msg_lev"]= GLPK.MSG_ERR
param["presolve"] = GLPK.ON

Note that the field names are passed as strings, and that all GLPK constants are available in Julia.
Also note that no test is currently performed at assignment to check that the provided values are valid.

This part of the API may change in the future.

4) scalar and array types translate in a natural way

The following C-to-Julia type conversion rules apply:

	C
	Julia

	int
	Int32

	double
	Float64

	char[]
	String

	glp_long
	Int64

On output, these rules apply exactly. On input, on the other hand, Julia requirements are more relaxed:

	C
	Julia

	int
	Integer

	glp_long
	Integer

	double
	Real

Whenever the C version expects a pointer to an array, a Julia Array can be passed. In the GLPK API, all indexing
starts from 1 even in the C version, so no special care is required on that side (in C, you would leave an
unused element at the beginning of each array; in Julia you don’t).

The relaxed requirements for inputs are also valid for arrays (e.g. one can pass an Array{Int64} when an array
of int is expected, and it will be converted automatically). The only exception is for functions which
return an array of values by filling out an allocated array whose pointer is provided by the user.
In that case, the strict version of the rules applies (i.e. you can only pass an Array{Int32} if an
array of int is expected). Those functions almost always have an alternative, more convenient formulation
as well, though.

5) optional arguments

Whenever the C version accepts the value NULL to indicate an optional pointer argument, the Julia version
accepts the constant nothing. In case the optional pointer argument is an array, an empty array is
also accepted (it can be of the expected type, e.g. Int32[], or even just [])
Most of the time, alternative ways to call the function are also provided.

6) fatal errors become exceptions

Whenever an invalid condition is detected (e.g. if you pass an invalid parameter, such as a negative length),
the Julia GLPK wrapper throws a GLPK.Error exception with some message detailing what went wrong.
Ideally, all invalid input combinations should be captured by Julia before being passed
over to the library, so that all errors could be catched via a try ... catch block;
in practice, it is likely that some conditions exist which will leak to the C API and break Julia: this should be
considered as a bug (and reported as such).

GLPK functions which are not avaliable yet in Julia

In general, all parts of the GLPK API which rely on callback functions are not avaliable in Julia.
In particular, you should not set the callback fields (cb_func and cb_info) in the GLPK.IntoptParam
type, unless you really know what you’re doing.

There are 5 groups of functions which are not wrapped:

	The branch & cut API function for mixed integer programming, because they are supposed to be called from
within a callback (see chapter 5 in the GLPK manual); they all start with this prefix:
	glp_ios_*

	All graph and network routines (anything involving glp_graph objects); these will be added in the future)

	Some misc functions which either have a variable argument list or involve callbacks (see section 6.1 in the GLPK
manual):
	glp_printf

	glp_vprintf

	glp_term_hook

	glp_error

	glp_assert

	glp_error_hook

	Some plain data file reading routines which involve long jumps / varargs (see section 6.2 in the GLPK manual):
	glp_sdf_set_jump

	glp_sdf_error

	glp_sdf_warning

	One additional routine, which may be included in the future:
	lpx_check_kkt

Functions which differ from their C counterparts

Some library functions return multiple values; as C cannot do this directly, this is obtained via some “pointer gymnastics”.
In Julia, on the other hand, this is not necessary, and providing an exact counterpart to the C version would be awkward and
pointless. There are 3 such functions:

	GLPK.analyze_bound

	GLPK.analyze_coef

	GLPK.mem_usage

For example the C declaration for glp_analyze_bound is:

void glp_analyze_bound(glp_prob *lp, int k, int *limit1, int *var1, int *limit2, int *var2)

In Julia, this becomes:

GLPK.analyze_bound(glp_prob::GLPK.Prob, k::Integer)

which returns a tuple:

julia> (limit1, var1, limit2, var2) = GLPK.analyze_bound(glp_prob, k)

The other 2 functions work in the same way, by just returning the values which in C you would pass
as pointers.

Some other functions have both a strictly-compatible calling form, for simplifying C code porting,
and some more convenient Julia counterparts. See the list below for more details.

One function has a different return value: GLPK.version returns a tuple of integer with the major and minor
version numbers, rather then a string.

List of GLPK functions in Julia

As stated above, this list only offers a brief explanation of what each function does and presents alternative
calling forms when available. Refer to the GLPK manual for a complete description.

	
set_prob_name(glp_prob, name)

	Assigns a name to the problem object (or deletes it if name is empty or nothing).

	
set_obj_name(glp_prob, name)

	Assigns a name to the objective function (or deletes it if name is empty or nothing).

	
set_obj_dir(glp_prob, dir)

	Sets the optimization direction, GLPK.MIN (minimization) or GLPK.MAX (maximization).

	
add_rows(glp_prob, rows)

	Adds the given number of rows (constraints) to the problem object; returns the number of
the first new row added.

	
add_cols(glp_prob, cols)

	Adds the given number of columns (structural variables) to the problem object; returns the number of
the first new column added.

	
set_row_name(glp_prob, row, name)

	Assigns a name to the specified row (or deletes it if name is empty or nothing).

	
set_col_name(glp_prob, col, name)

	Assigns a name to the specified column (or deletes it if name is empty or nothing).

	
set_row_bnds(glp_prob, row, bounds_type, lb, ub)

	Sets the type and bounds on a row. type must be one of GLPK.FR (free), GLPK.LO (lower bounded),
GLPK.UP (upper bounded), GLPK.DB (double bounded), GLPK.FX (fixed).

At initialization, each row is free.

	
set_col_bnds(glp_prob, col, bounds_type, lb, ub)

	Sets the type and bounds on a column. type must be one of GLPK.FR (free), GLPK.LO (lower bounded),
GLPK.UP (upper bounded), GLPK.DB (double bounded), GLPK.FX (fixed).

At initialization, each column is fixed at 0.

	
set_obj_coef(glp_prob, col, coef)

	Sets the objective coefficient to a column (col can be 0 to indicate the constant term of the objective function).

	
set_mat_row(glp_prob, row[, len], ind, val)

	Sets (replaces) the content of a row. The content is specified in sparse format: ind is a vector of indices,
val is the vector of corresponding values. len is the number of vector elements which will be considered,
and must be less or equal to the length of both ind and val. If len is 0, ind and/or val can be nothing.

In Julia, len can be omitted, and then it is inferred from ind and val (which need to have the same length
in such case).

	
set_mat_col(glp_prob, col[, len], ind, val)

	Sets (replaces) the content of a column. Everything else is like set_mat_row.

	
load_matrix(glp_prob[, numel], ia, ja, ar)

	
load_matrix(glp_prob, A)

	Sets (replaces) the content matrix (i.e. sets all rows/coluns at once). The matrix is passed in sparse
format.

In the first form (original C API), it’s passed via 3 vectors: ia and ja are for rows/columns
indices, ar is for values. numel is the number of elements which will be read and must be less or
equal to the length of any of the 3 vectors. If numel is 0, any of the vectors can be passed as nothing.

In Julia, numel can be omitted, and then it is inferred from ia, ja and ar (which need to have the same length
in such case).

Also, in Julia there’s a second, simpler calling form, in which the matrix is passed as a SparseMatrixCSC object.

	
check_dup(rows, cols[, numel], ia, ja)

	Check for duplicates in the indices vectors ia and ja. numel has the same meaning and (optional) use as in
load_matrix. Returns 0 if no duplicates/out-of-range indices are found, or a positive number indicating where a duplicate
occurs, or a negative number indicating an out-of-bounds index.

	
sort_matrix(glp_prob)

	Sorts the elements of the problem object’s matrix.

	
del_rows(glp_prob[, num_rows], rows_ids)

	Deletes rows from the problem object. Rows are specified in the rows_ids vector. num_rows is the number of elements
of rows_ids which will be considered, and must be less or equal to the length id rows_ids. If num_rows is 0, rows_ids
can be nothing. In Julia, num_rows is optional (it’s inferred from rows_ids if not given).

	
del_cols(glp_prob, cols_ids)

	Deletes columns from the problem object. See del_rows.

	
copy_prob(glp_prob_dest, glp_prob, copy_names)

	Makes a copy of the problem object. The flag copy_names determines if names are copied, and must be either GLPK.ON or GLPK.OFF.

	
erase_prob(glp_prob)

	Resets the problem object.

	
get_prob_name(glp_prob)

	Returns the problem object’s name. Unlike the C version, if the problem has no assigned name, returns an empty string.

	
get_obj_name(glp_prob)

	Returns the objective function’s name. Unlike the C version, if the objective has no assigned name, returns an empty string.

	
get_obj_dir(glp_prob)

	Returns the optimization direction, GLPK.MIN (minimization) or GLPK.MAX (maximization).

	
get_num_rows(glp_prob)

	Returns the current number of rows.

	
get_num_cols(glp_prob)

	Returns the current number of columns.

	
get_row_name(glp_prob, row)

	Returns the name of the specified row. Unlike the C version, if the row has no assigned name, returns an empty string.

	
get_col_name(glp_prob, col)

	Returns the name of the specified column. Unlike the C version, if the column has no assigned name, returns an empty string.

	
get_row_type(glp_prob, row)

	Returns the type of the specified row: GLPK.FR (free), GLPK.LO (lower bounded),
GLPK.UP (upper bounded), GLPK.DB (double bounded), GLPK.FX (fixed).

	
get_row_lb(glp_prob, row)

	Returns the lower bound of the specified row, -DBL_MAX if unbounded.

	
get_row_ub(glp_prob, row)

	Returns the upper bound of the specified row, +DBL_MAX if unbounded.

	
get_col_type(glp_prob, col)

	Returns the type of the specified column: GLPK.FR (free), GLPK.LO (lower bounded),
GLPK.UP (upper bounded), GLPK.DB (double bounded), GLPK.FX (fixed).

	
get_col_lb(glp_prob, col)

	Returns the lower bound of the specified column, -DBL_MAX if unbounded.

	
get_col_ub(glp_prob, col)

	Returns the upper bound of the specified column, +DBL_MAX if unbounded.

	
get_obj_coef(glp_prob, col)

	Return the objective coefficient to a column (col can be 0 to indicate the constant term of the objective function).

	
get_num_nz(glp_prob)

	Return the number of non-zero elements in the constraint matrix.

	
get_mat_row(glp_prob, row, ind, val)

	
get_mat_row(glp_prob, row)

	Returns the contents of a row. In the first form (original C API), it fills the ind and val vectors provided,
which must be of type Vector{Int32} and Vector{Float64} respectively, and have a sufficient length to hold the result
(or they can be empty or nothing, and then they’re not filled). It returns the length of the result.

In Julia, there’s a second, simpler calling form which allocates and returns the two vectors as (ind, val).

	
get_mat_col(glp_prob, col, ind, val)

	
get_mat_col(glp_prob, col)

	Returns the contents of a column. See get_mat_row.

	
create_index(glp_prob)

	Creates the name index (used by find_row, find_col) for the problem object.

	
find_row(glp_prob, name)

	Finds the numeric id of a row by name. Returns 0 if no row with the given name is found.

	
find_col(glp_prob, name)

	Finds the numeric id of a column by name. Returns 0 if no column with the given name is found.

	
delete_index(glp_prob)

	Deletes the name index for the problem object.

	
set_rii(glp_prob, row, rii)

	Sets the rii scale factor for the specified row.

	
set_sjj(glp_prob, col, sjj)

	Sets the sjj scale factor for the specified column.

	
get_rii(glp_prob, row)

	Returns the rii scale factor for the specified row.

	
get_sjj(glp_prob, col)

	Returns the sjj scale factor for the specified column.

	
scale_prob(glp_prob, flags)

	Performs automatic scaling of problem data for the problem object. The parameter flags can be GLPK.SF_AUTO (automatic)
or a bitwise OR of the forllowing: GLPK.SF_GM (geometric mean), GLPK.SF_EQ (equilibration), GLPK.SF_2N (nearest power of 2),
GLPK.SF_SKIP (skip if well scaled).

	
unscale_prob(glp_prob)

	Unscale the problem data (cancels the scaling effect).

	
set_row_stat(glp_prob, row, stat)

	Sets the status of the specified row. stat must be one of: GLPK.BS (basic), GLPK.NL (non-basic lower bounded),
GLPK.NU (non-basic upper-bounded), GLPK.NF (non-basic free), GLPK.NS (non-basic fixed).

	
set_col_stat(glp_prob, col, stat)

	Sets the status of the specified column. stat must be one of: GLPK.BS (basic), GLPK.NL (non-basic lower bounded),
GLPK.NU (non-basic upper-bounded), GLPK.NF (non-basic free), GLPK.NS (non-basic fixed).

	
std_basis(glp_prob)

	Constructs the standard (trivial) initial LP basis for the problem object.

	
adv_basis(glp_prob[, flags])

	Constructs an advanced initial LP basis for the problem object. The flag flags is optional; it must be 0 if given.

	
cpx_basis(glp_prob)

	Constructs an initial LP basis for the problem object with the algorithm proposed by R. Bixby.

	
simplex(glp_prob[, glp_param])

	The routine simplex is a driver to the LP solver based on the simplex
method. This routine retrieves problem data from the specified problem
object, calls the solver to solve the problem instance, and stores results of
computations back into the problem object.

The parameters are specified via the optional glp_param argument, which is of type GLPK.SimplexParam
(or nothing to use the default settings).

Returns 0 in case of success, or a non-zero flag specifying the reason for failure: GLPK.EBADB (invalid base),
GLPK.ESING (singular matrix), GLPK.ECOND (ill-conditioned matrix), GLPK.EBOUND (incorrect bounds),
GLPK.EFAIL (solver failure), GLPK.EOBJLL (lower limit reached), GLPK.EOBJUL (upper limit reached),
GLPK.ITLIM (iterations limit exceeded), GLPK.ETLIM (time limit exceeded), GLPK.ENOPFS (no primal feasible
solution), GLPK.ENODFS (no dual feasible solution).

	
exact(glp_prob[, glp_param])

	A tentative implementation of the primal two-phase simplex method based on exact (rational) arithmetic. Similar to
simplex. The optional glp_param is of type GLPK.SimplexParam.

The possible return values are 0 (success) or GLPK.EBADB, GLPK.ESING, GLPK.EBOUND,
GLPK.EFAIL, GLPK.ITLIM, GLPK.ETLIM (see simplex()).

	
init_smcp(glp_param)

	Initializes a GLPK.SimplexParam object with the default values. In Julia, this is done at object creation time; this
function can be used to reset the object.

	
get_status(glp_prob)

	Returns the generic status of the current basic solution: GLPK.OPT (optimal),
GLPK.FEAS (feasible), GLPK.INFEAS (infeasible), GLPK.NOFEAS (no feasible solution), GLPK.UNBND
(unbounded solution), GLPK.UNDEF (undefined).

	
get_prim_stat(glp_prob)

	Returns the status of the primal basic solution: GLPK.FEAS, GLPK.INFEAS, GLPK.NOFEAS,
GLPK.UNDEF (see get_status()).

	
get_dual_stat(glp_prob)

	Returns the status of the dual basic solution: GLPK.FEAS, GLPK.INFEAS, GLPK.NOFEAS,
GLPK.UNDEF (see get_status()).

	
get_obj_val(glp_prob)

	Returns the current value of the objective function.

	
get_row_stat(glp_prob, row)

	Returns the status of the specified row: GLPK.BS, GLPK.NL, GLPK.NU, GLPK.NF,
GLPK.NS (see set_row_stat()).

	
get_row_prim(glp_prob, row)

	Returns the primal value of the specified row.

	
get_row_dual(glp_prob, row)

	Returns the dual value (reduced cost) of the specified row.

	
get_col_stat(glp_prob, col)

	Returns the status of the specified column: GLPK.BS, GLPK.NL, GLPK.NU, GLPK.NF,
GLPK.NS (see set_row_stat()).

	
get_col_prim(glp_prob, col)

	Returns the primal value of the specified column.

	
get_col_dual(glp_prob, col)

	Returns the dual value (reduced cost) of the specified column.

	
get_unbnd_ray(glp_prob)

	Returns the number k of a variable, which causes primal or dual unboundedness (if 1 <= k <= rows
it’s row k; if rows+1 <= k <= rows+cols it’s column k-rows, if k=0 such variable is not defined).

	
interior(glp_prob[, glp_param])

	The routine interior is a driver to the LP solver based on the primal-dual
interior-point method. This routine retrieves problem data from the
specified problem object, calls the solver to solve the problem instance, and
stores results of computations back into the problem object.

The parameters are specified via the optional glp_param argument, which is of type GLPK.InteriorParam
(or nothing to use the default settings).

Returns 0 in case of success, or a non-zero flag specifying the reason for failure: GLPK.EFAIL (solver failure),
GLPK.ENOCVG (very slow convergence, or divergence), GLPK.ITLIM (iterations limit exceeded),
GLPK.EINSTAB (numerical instability).

	
init_iptcp(glp_param)

	Initializes a GLPK.InteriorParam object with the default values. In Julia, this is done at object creation time; this
function can be used to reset the object.

	
ipt_status(glp_prob)

	Returns the status of the interior-point solution: GLPK.OPT (optimal),
GLPK.INFEAS (infeasible), GLPK.NOFEAS (no feasible solution), GLPK.UNDEF (undefined).

	
ipt_obj_val(glp_prob)

	Returns the current value of the objective function for the interior-point solution.

	
ipt_row_prim(glp_prob, row)

	Returns the primal value of the specified row for the interior-point solution.

	
ipt_row_dual(glp_prob, row)

	Returns the dual value (reduced cost) of the specified row for the interior-point solution.

	
ipt_col_prim(glp_prob, col)

	Returns the primal value of the specified column for the interior-point solution.

	
ipt_col_dual(glp_prob, col)

	Returns the dual value (reduced cost) of the specified column for the interior-point solution.

	
set_col_kind(glp_prob, col, kind)

	Sets the kind for the specified column (for mixed-integer programming). kind must be one of:
GLPK.CV (continuous), GLPK.IV (integer), GLPK.BV (binary, 0/1).

	
get_col_kind(glp_prob, col)

	Returns the kind for the specified column (see set_col_kind()).

	
get_num_int(glp_prob)

	Returns the number of columns marked as integer (including binary).

	
get_num_bin(glp_prob)

	Returns the number of columns marked binary.

	
intopt(glp_prob[, glp_param])

	The routine intopt is a driver to the mixed-integer-programming (MIP) solver
based on the branch- and-cut method, which is a hybrid of branch-and-bound
and cutting plane methods.

The parameters are specified via the optional glp_param argument, which is of type GLPK.IntoptParam
(or nothing to use the default settings).

Returns 0 in case of success, or a non-zero flag specifying the reason for failure: GLPK.EBOUND (incorrect bounds),
GLPK.EROOT (no optimal LP basis given), GLPK.ENOPFS (no primal feasible LP solution), GLPK.ENODFS (no dual
feasible LP solution), GLPK.EFAIL (solver failure), GLPK.EMIPGAP (mip gap tolearance reached), GLPK.ETLIM
(time limit exceeded), GLPK.ESTOP (terminated by application).

	
init_iocp(glp_param)

	Initializes a GLPK.IntoptParam object with the default values. In Julia, this is done at object creation time; this
function can be used to reset the object.

	
mip_status(glp_prob)

	Returns the generic status of the MIP solution: GLPK.OPT (optimal),
GLPK.FEAS (feasible), GLPK.NOFEAS (no feasible solution), GLPK.UNDEF (undefined).

	
mip_obj_val(glp_prob)

	Returns the current value of the objective function for the MIP solution.

	
mip_row_val(glp_prob, row)

	Returns the value of the specified row for the MIP solution.

	
mip_col_val(glp_prob, col)

	Returns the value of the specified column for the MIP solution.

	
read_mps(glp_prob, format[, param], filename)

	Reads problem data in MPS format from a text file. format must be one of GLPK.MPS_DECK (fixed, old) or GLPK.MPS_FILE
(free, modern). param is optional; if given it must be nothing.

Returns 0 upon success; throws an error in case of failure.

	
write_mps(glp_prob, format[, param], filename)

	Writes problem data in MPS format from a text file. See read_mps.

Returns 0 upon success; throws an error in case of failure.

	
read_lp(glp_prob[, param], filename)

	Reads problem data in CPLEX LP format from a text file. param is optional; if given it must be nothing.

Returns 0 upon success; throws an error in case of failure.

	
write_lp(glp_prob[, param], filename)

	Writes problem data in CPLEX LP format from a text file. See read_lp.

Returns 0 upon success; throws an error in case of failure.

	
read_prob(glp_prob[, flags], filename)

	Reads problem data in GLPK LP/MIP format from a text file. flags is optional; if given it must be 0.

Returns 0 upon success; throws an error in case of failure.

	
write_prob(glp_prob[, flags], filename)

	Writes problem data in GLPK LP/MIP format from a text file. See read_prob.

Returns 0 upon success; throws an error in case of failure.

	
mpl_read_model(glp_tran, filename, skip)

	Reads the model section and, optionally, the data section, from a text file in MathProg format, and stores it
in glp_tran, which is a GLPK.MathProgWorkspace object. If skip is nonzero, the data section is skipped
if present.

Returns 0 upon success; throws an error in case of failure.

	
mpl_read_data(glp_tran, filename)

	Reads data section from a text file in MathProg format and stores it in glp_tran, which is a
GLPK.MathProgWorkspace object. May be called more than once.

Returns 0 upon success; throws an error in case of failure.

	
mpl_generate(glp_tran[, filename])

	Generates the model using its description stored in the GLPK.MathProgWorkspace translator workspace glp_tran.
The optional filename specifies an output file; if not given or nothing, the terminal is used.

Returns 0 upon success; throws an error in case of failure.

	
mpl_build_prob(glp_tran, glp_prob)

	Transfer information from the GLPK.MathProgWorkspace translator workspace glp_tran to the GLPK.Prob problem
object glp_prob.

	
mpl_postsolve(glp_tran, glp_prob, sol)

	Copies the solution from the GLPK.Prob problem object glp_prob to the GLPK.MathProgWorkspace translator workspace
glp_tran and then executes all the remaining model statements, which follow the solve statement.

The parameter sol specifies which solution should be copied from the problem object to the workspace: GLPK.SOL (basic),
GLPK.IPT (interior-point), GLPK.MIP (MIP).

Returns 0 upon success; throws an error in case of failure.

	
print_sol(glp_prob, filename)

	Writes the current basic solution to a text file, in printable format.

Returns 0 upon success; throws an error in case of failure.

	
read_sol(glp_prob, filename)

	Reads the current basic solution from a text file, in the format used by write_sol.

Returns 0 upon success; throws an error in case of failure.

	
write_sol(glp_prob, filename)

	Writes the current basic solution from a text file, in a format which can be read by read_sol.

Returns 0 upon success; throws an error in case of failure.

	
print_ipt(glp_prob, filename)

	Writes the current interior-point solution to a text file, in printable format.

Returns 0 upon success; throws an error in case of failure.

	
read_ipt(glp_prob, filename)

	Reads the current interior-point solution from a text file, in the format used by write_ipt.

Returns 0 upon success; throws an error in case of failure.

	
write_ipt(glp_prob, filename)

	Writes the current interior-point solution from a text file, in a format which can be read by read_ipt.

Returns 0 upon success; throws an error in case of failure.

	
print_mip(glp_prob, filename)

	Writes the current MIP solution to a text file, in printable format.

Returns 0 upon success; throws an error in case of failure.

	
read_mip(glp_prob, filename)

	Reads the current MIP solution from a text file, in the format used by write_mip.

Returns 0 upon success; throws an error in case of failure.

	
write_mip(glp_prob, filename)

	Writes the current MIP solution from a text file, in a format which can be read by read_mip.

Returns 0 upon success; throws an error in case of failure.

	
print_ranges(glp_prob, [[len,] list,] [flags,] filename)

	Performs sensitivity analysis of current optimal basic solution and writes the analysis report
in human-readable format to a text file. list is a vector specifying the rows/columns to analyze
(if 1 <= list[i] <= rows, analyzes row list[i]; if rows+1 <= list[i] <= rows+cols, analyzes column
list[i]-rows). len is the number of elements of list which will be consideres, and must be smaller
or equal to the length of the list. In Julia, len is optional (it’s inferred from len if not given).
list can be empty of nothing or not given at all, implying all indices will be analyzed. flags is
optional, and must be 0 if given.

To call this function, the current basic solution must be optimal, and the basis factorization must exist.

Returns 0 upon success, non-zero otherwise.

	
bf_exists(glp_prob)

	Returns non-zero if the basis fatorization for the current basis exists, 0 otherwise.

	
factorize(glp_prob)

	Computes the basis factorization for the current basis.

Returns 0 if successful, otherwise: GLPK.EBADB (invalid matrix), GLPK.ESING (singluar matrix),
GLPK.ECOND (ill-conditioned matrix).

	
bf_updated(glp_prob)

	Returns 0 if the basis factorization was computed from scratch, non-zero otherwise.

	
get_bfcp(glp_prob, glp_param)

	Retrieves control parameters, which are used on computing and updating the basis factorization
associated with the problem object, and stores them in the GLPK.BasisFactParam object glp_param.

	
set_bfcp(glp_prob[, glp_param])

	Sets the control parameters stored in the GLPK.BasisFactParam object glp_param into the problem
object. If glp_param is nothing or is omitted, resets the parameters to their defaults.

The glp_param should always be retreived via get_bfcp before changing its values and calling
this function.

	
get_bhead(glp_prob, k)

	Returns the basis header information for the current basis. k is a row index.

Returns either i such that 1 <= i <= rows, if k corresponds to i-th auxiliary variable,
or rows+j such that 1 <= j <= columns, if k corresponds to the j-th structural variable.

	
get_row_bind(glp_prob, row)

	Returns the index of the basic variable k which is associated with the specified row, or 0 if
the variable is non-basic. If GLPK.get_bhead(glp_prob, k) == row, then GLPK.get_bind(glp_prob, row) = k.

	
get_col_bind(glp_prob, col)

	Returns the index of the basic variable k which is associated with the specified column, or 0 if
the variable is non-basic. If GLPK.get_bhead(glp_prob, k) == rows+col, then GLPK.get_bind(glp_prob, col) = k.

	
ftran(glp_prob, v)

	Performs forward transformation (FTRAN), i.e. it solves the system Bx = b, where B is the basis matrix,
x is the vector of unknowns to be computed, b is the vector of right-hand sides. At input, v represents the
vector b; at output, it contains the vector x. v must be a Vector{Float64} whose length is the number of rows.

	
btran(glp_prob, v)

	Performs backward transformation (BTRAN), i.e. it solves the system B'x = b, where B is the transposed of the basis
matrix, x is the vector of unknowns to be computed, b is the vector of right-hand sides. At input, v represents the
vector b; at output, it contains the vector x. v must be a Vector{Float64} whose length is the number of rows.

	
warm_up(glp_prob)

	“Warms up” the LP basis using current statuses assigned to rows and columns, i.e. computes factorization of the basis
matrix (if it does not exist), computes primal and dual components of basic solution, and determines the solution status.

Returns 0 if successful, otherwise: GLPK.EBADB (invalid matrix), GLPK.ESING (singluar matrix),
GLPK.ECOND (ill-conditioned matrix).

	
eval_tab_row(glp_prob, k, ind, val)

	
eval_tab_row(glp_prob, k)

	Computes a row of the current simplex tableau which corresponds to some basic variable specified by the parameter k.
If 1 <= k <= rows, uses k-th auxiliary variable; if rows+1 <= k <= rows+cols, uses (k-rows)-th structural
variable. The basis factorization must exist.

In the first form, stores the result in the provided vectors ind and val, which must be of type Vector{Int32} and
Vector{Float64}, respectively, and returns the length of the outcome; in Julia, the vectors will be resized as needed to hold
the result.

In the second, simpler form, ind and val are returned in a tuple as the output of the function.

	
eval_tab_col(glp_prob, k, ind, val)

	
eval_tab_col(glp_prob, k)

	Computes a column of the current simplex tableau which corresponds to some non-basic variable specified by the parameter k.
See eval_tab_row.

	
transform_row(glp_prob[, len], ind, val)

	Performs the same operation as eval_tab_row with the exception that the row to be transformed is specified
explicitly as a sparse vector. The parameter len is the number of elements of ind and val which will be used,
and must be smaller or equal to the length of both vectors; in Julia it is optional (and the ind and val must have the
same length). The vectors int and val must be of type Vector{Int32} and Vector{Float64}, respectively, since
they will also hold the result; in Julia, they will be resized to the resulting required length.

Returns the length if the resulting vectors ind and val.

	
transform_col(glp_prob[, len], ind, val)

	Performs the same operation as eval_tab_col with the exception that the row to be transformed is specified
explicitly as a sparse vector. See transform_row.

	
prim_rtest(glp_prob[, len], ind, val, dir, eps)

	Performs the primal ratio test using an explicitly specified column of the simplex table.
The current basic solution must be primal feasible.
The column is specified in sparse format by len (length of the vector), ind and val (indices and values of
the vector). len is the number of elements which will be considered and must be smaller or equal to the length of
both ind and val; in Julia, it can be omitted (and then ind and val must have the same length).
The indices in ind must be between 1 and rows+cols; they must correspond to basic variables.
dir is a direction parameter which must be either +1 (increasing) or -1 (decreasing).
eps is a tolerance parameter and must be positive.
See the GLPK manual for a detailed explanation.

Returns the position in ind and val which corresponds to the pivot element, or 0 if the choice cannot be made.

	
dual_rtest(glp_prob[, len], ind, val, dir, eps)

	Performs the dual ratio test using an explicitly specified row of the simplex table.
The current basic solution must be dual feasible.
The indices in ind must correspond to non-basic variables.
Everything else is like in prim_rtest.

	
analyze_bound(glp_prob, k)

	Analyzes the effect of varying the active bound of specified non-basic variable. See the GLPK manual for a
detailed explanation.
In Julia, this function has a different API then C. It returns (limit1, var1, limit2, var2) rather
then taking them as pointers in the argument list.

	
analyze_coef(glp_prob, k)

	Analyzes the effect of varying the objective coefficient at specified basic variable. See the GLPK manual for a
detailed explanation.
In Julia, this function has a different API then C. It returns
(coef1, var1, value1, coef2, var2, value2) rather then taking them as pointers in the argument list.

	
init_env()

	Initializes the GLPK environment. Not normally needed.

Returns 0 (initilization successful), 1 (environment already initialized), 2 (failed, insufficient memory) or
3 (failed, unsupported programming model).

	
version()

	Returns the GLPK version number. In Julia, instead of returning a string as in C, it returns a tuple of integer
values, containing the major and the minor number.

	
free_env()

	Frees all resources used by GLPK routines (memory blocks, etc.) which are currently still in use. Not normally needed.

Returns 0 if successful, 1 if envirnoment is inactive.

	
term_out(flag)

	Enables/disables the terminal output of glpk routines. flag is either GLPK.ON (output enabled) or GLPK.OFF
(output disabled).

Returns the previous status of the terminal output.

	
open_tee(filename)

	Starts copying all the terminal output to an output text file.

Returns 0 if successful, 1 if already active, 2 if it fails creating the output file.

	
close_tee()

	Stops copying the terminal output to the output text file previously open by the open_tee.

Return 0 if successful, 1 if copying terminal output was not started.

	
malloc(size)

	Replacement of standard C malloc. Allocates uninitialized memeory which must freed with free.

Returns a pointer to the allocated memory.

	
calloc(n, size)

	Replacement of standard C calloc, but does not initialize the memeory.
Allocates uninitialized memeory which must freed with free.

Returns a pointer to the allocated memory.

	
free(ptr)

	Deallocates a memory block previously allocated by malloc or calloc.

	
mem_usage()

	Reports some information about utilization of the memory by the routines malloc, calloc,
and free.
In Julia, this function has a different API then C. It returns (count, cpeak, total, tpeak) rather
then taking them as pointers in the argument list.

	
mem_limit(limit)

	Limits the amount of memory avaliable for dynamic allocation to a value in megabyes given by the integer
parameter limit.

	
time()

	Returns the current universal time (UTC), in milliseconds.

	
difftime(t1, t0)

	Returns the difference between two time values t1 and t0, expressed in seconds.

	
sdf_open_file(filename)

	Opens a plain data file.

If successful, returns a GLPK.Data object, otherwise throws an error.

	
sdf_read_int(glp_data)

	Reads an integer number from the plain data file specified by the GLPK.Data parameter glp_data, skipping initial
whitespace.

	
sdf_read_num(glp_data)

	Reads a floating point number from the plain data file specified by the GLPK.Data parameter glp_data, skipping initial
whitespace.

	
sdf_read_item(glp_data)

	Reads a data item (a String) from the plain data file specified by the GLPK.Data parameter glp_data, skipping initial
whitespace.

	
sdf_read_text(glp_data)

	Reads a line of text from the plain data file specified by the GLPK.Data parameter glp_data, skipping initial and final
whitespace.

	
sdf_line(glp_data)

	Returns the current line in the GLPK.Data object glp_data

	
sdf_close_file(glp_data)

	Closes the file associated to glp_data and frees the resources.

	
read_cnfsat(glp_prob, filename)

	Reads the CNF-SAT problem data in DIMACS format from a text file.

Returns 0 upon success; throws an error in case of failure.

	
check_cnfsat(glp_prob)

	Checks if the problem object encodes a CNF-SAT problem instance, in which case it returns 0,
otherwise returns non-zero.

	
write_cnfsat(glp_prob, filename)

	Writes the CNF-SAT problem data in DIMACS format into a text file.

Returns 0 upon success; throws an error in case of failure.

	
minisat1(glp_prob)

	The routine minisat1 is a driver to MiniSat, a CNF-SAT solver developed by
Niklas Eén and Niklas Sörensson, Chalmers University of Technology, Sweden.

Returns 0 in case of success, or a non-zero flag specifying the reason for failure: GLPK.EDATA
(problem is not CNF-SAT), GLPK.EFAIL (solver failure).

	
intfeas1(glp_prob, use_bound, obj_bound)

	The routine glp_intfeas1 is a tentative implementation of an integer feasibility solver
based on a CNF-SAT solver (currently MiniSat). use_bound is a flag: if zero, any feasible solution
is seeked, otherwise seraches for an integer feasible solution. obj_bound is used only if
use_bound is non-zero, and specifies an upper/lower bound (for maximization/minimazion respectively)
to the objective function.

All variables (columns) must either be binary or fixed. All constraint and objective coeffient
must be integer.

Returns 0 in case of success, or a non-zero flag specifying the reason for failure: GLPK.EDATA
(problem data is not valid), GLPK.ERANGE (integer overflow occurred), GLPK.EFAIL (solver failure).

 Copyright 2013, Carlo Baldassi.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	release-0.2

 	release-0.1

 	latest

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	GLPK wrapper package for the Julia language 0.1 documentation

 Python Module Index

 g

 			

 		
 g	

 	
 	
 GLPK	
 GLPK wrapper

 Copyright 2013, Carlo Baldassi.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	release-0.2

 	release-0.1

 	latest

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	GLPK wrapper package for the Julia language 0.1 documentation

 Python Module Index

 g

 			

 		
 g	

 	
 	
 GLPK	
 GLPK wrapper

 Copyright 2013, Carlo Baldassi.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	release-0.2

 	release-0.1

 	latest

 Index

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	GLPK wrapper package for the Julia language 0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	add_cols() (in module GLPK)

 	add_rows() (in module GLPK)

 	adv_basis() (in module GLPK)

 	

 	analyze_bound() (in module GLPK)

 	analyze_coef() (in module GLPK)

B

 	

 	bf_exists() (in module GLPK)

 	bf_updated() (in module GLPK)

 	

 	btran() (in module GLPK)

C

 	

 	calloc() (in module GLPK)

 	check_cnfsat() (in module GLPK)

 	check_dup() (in module GLPK)

 	close_tee() (in module GLPK)

 	

 	copy_prob() (in module GLPK)

 	cpx_basis() (in module GLPK)

 	create_index() (in module GLPK)

D

 	

 	del_cols() (in module GLPK)

 	del_rows() (in module GLPK)

 	delete_index() (in module GLPK)

 	

 	difftime() (in module GLPK)

 	dual_rtest() (in module GLPK)

E

 	

 	erase_prob() (in module GLPK)

 	eval_tab_col() (in module GLPK)

 	

 	eval_tab_row() (in module GLPK)

 	exact() (in module GLPK)

F

 	

 	factorize() (in module GLPK)

 	find_col() (in module GLPK)

 	find_row() (in module GLPK)

 	

 	free() (in module GLPK)

 	free_env() (in module GLPK)

 	ftran() (in module GLPK)

G

 	

 	get_bfcp() (in module GLPK)

 	get_bhead() (in module GLPK)

 	get_col_bind() (in module GLPK)

 	get_col_dual() (in module GLPK)

 	get_col_kind() (in module GLPK)

 	get_col_lb() (in module GLPK)

 	get_col_name() (in module GLPK)

 	get_col_prim() (in module GLPK)

 	get_col_stat() (in module GLPK)

 	get_col_type() (in module GLPK)

 	get_col_ub() (in module GLPK)

 	get_dual_stat() (in module GLPK)

 	get_mat_col() (in module GLPK)

 	get_mat_row() (in module GLPK)

 	get_num_bin() (in module GLPK)

 	get_num_cols() (in module GLPK)

 	get_num_int() (in module GLPK)

 	get_num_nz() (in module GLPK)

 	get_num_rows() (in module GLPK)

 	

 	get_obj_coef() (in module GLPK)

 	get_obj_dir() (in module GLPK)

 	get_obj_name() (in module GLPK)

 	get_obj_val() (in module GLPK)

 	get_prim_stat() (in module GLPK)

 	get_prob_name() (in module GLPK)

 	get_rii() (in module GLPK)

 	get_row_bind() (in module GLPK)

 	get_row_dual() (in module GLPK)

 	get_row_lb() (in module GLPK)

 	get_row_name() (in module GLPK)

 	get_row_prim() (in module GLPK)

 	get_row_stat() (in module GLPK)

 	get_row_type() (in module GLPK)

 	get_row_ub() (in module GLPK)

 	get_sjj() (in module GLPK)

 	get_status() (in module GLPK)

 	get_unbnd_ray() (in module GLPK)

 	GLPK (module)

I

 	

 	init_env() (in module GLPK)

 	init_iocp() (in module GLPK)

 	init_iptcp() (in module GLPK)

 	init_smcp() (in module GLPK)

 	interior() (in module GLPK)

 	intfeas1() (in module GLPK)

 	intopt() (in module GLPK)

 	

 	ipt_col_dual() (in module GLPK)

 	ipt_col_prim() (in module GLPK)

 	ipt_obj_val() (in module GLPK)

 	ipt_row_dual() (in module GLPK)

 	ipt_row_prim() (in module GLPK)

 	ipt_status() (in module GLPK)

L

 	

 	load_matrix() (in module GLPK)

M

 	

 	malloc() (in module GLPK)

 	mem_limit() (in module GLPK)

 	mem_usage() (in module GLPK)

 	minisat1() (in module GLPK)

 	mip_col_val() (in module GLPK)

 	mip_obj_val() (in module GLPK)

 	mip_row_val() (in module GLPK)

 	

 	mip_status() (in module GLPK)

 	mpl_build_prob() (in module GLPK)

 	mpl_generate() (in module GLPK)

 	mpl_postsolve() (in module GLPK)

 	mpl_read_data() (in module GLPK)

 	mpl_read_model() (in module GLPK)

O

 	

 	open_tee() (in module GLPK)

P

 	

 	prim_rtest() (in module GLPK)

 	print_ipt() (in module GLPK)

 	print_mip() (in module GLPK)

